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Abstract—Hand gesture-based interfaces have become 

increasingly popular as a form to interact with computing devices. 

Unfortunately, standard gesture interfaces are not very usable by 

individuals with upper limb motor impairments, including 

quadriplegics due to spinal cord injury (SCI). The objective of this 

paper is to convert an existing interface to be usable by users with 

motor impairments. The key idea is to project existing patterns of 

gestural behavior to match those exhibited by users with 

quadriplegia due to common cervical SCIs. Two complementary 

approaches (a user-centered and an analytic approach) have been 

developed and validated to provide both subjective and 

quantitative solution to interface design. The feasibility of the 

proposed methodology was validated through user-based 

experimental paradigms. Through this study, subjects with upper 

extremity motor impairments preferred (gave a significantly lower 

Borg scale) the use of alternative constrained gestures generated 

by the proposed approach rather than the standard gestures.  

 
Index Terms— Assistive technologies, hand gesture-based 

interfaces, spinal cord injury, Laban space. 

I. INTRODUCTION 

ESTURE recognition has been incorporated to design 

touch-free interfaces and to enhance users’ experiences in 

many applications, such as mobile communication [1], smart 

home [2], robotics [3], entertainment [4], healthcare [5] and 

education [6]. For example, in the entertainment industry, 

gesture recognition based interfaces have been developed for 

Wii®, TLV® Play, Gesture Cube, Leap Motion®, and Xbox 

360.  

Gaming technologies (relying on gesture-interaction) is 

beneficial to users with quadriplegia due to spinal cord injury 

(SCI), since gestural commands can supplement users’ hands 

off physical therapy [7]. Unfortunately, gesture recognition 

based interfaces have been developed without considering the 

motor limitations of users with upper extremity motor 

disabilities. Studies in the area of rehabilitation engineering and 

assistive technologies (AT) have investigated the design of 

hand-gesture based interfaces for users with quadriplegia [8]–

[10]. These approaches provide off-the-cuff solutions that 

require redesigning the interface from scratch for each 

individual user. By “design from scratch”, we mean that the 

user needs to select each gesture from the beginning and train 

them with enough samples. There is currently no existing 

methodology to convert commercial gesture-based1 interfaces 

 
 

for people with upper extremity motor impairments.  

For this reason, there is a need for a universal, generable 

approach to interpret gestures by quadriplegics due to high level 

(Cervical-1 (C-1) to Cervical-8 (C-8)) SCI that can work with 

existing sensors in the market with very little customization. To 

solve this problem, a user-centered approach and an automatic 

gesture projection approach concerning physical constraints are 

proposed to provide usable and effective gestural based 

interface for people with quadriplegia due to SCI. The user-

centered approach consists of interviews with users with 

quadriplegia and determining a constrained gesture lexicon (set 

of gestures) based on their needs. In the analytic approach, 

Laban Movement Analysis (LMA) was applied to characterize 

gesture trajectories. LMA is a method proposed to describe all 

forms of human motion [11], including dance, music, and 

occupational therapy [12], [13]. LMA describes different 

aspects (direction, pathways, space used, and energy required) 

of human motion using four components: Body, Space, Effort 

and Shape [14], and has been applied to gesture analysis [15]. 

This theory plays a key role for determining the common 

patterns of gesture behaviors exhibited by users with motor 

disabilities [16], [17], [30], [31]. For the analytic approach, 

existing gestures designed for users without disabilities are 

encoded into a feature vector (using Space, Shape and Effort 

components of LMA, and components representing kinematic 

and geometric gesture characteristics). A pre-trained 

transformation function is then applied to the feature vector to 

obtain a candidate gesture set suitable for users with 

quadriplegia. 

The contribution of this paper is three-fold: 1) two new 

approaches for gesture generation: a user-centered approach 

(through subjective interviews) and an analytic approach (based 

on gesture transformation between different manifolds, denoted 

as Laban Transform); 2) a solution to the problem of gesture 

projection from gestures designed for commercial consoles to 

suitable gestures for users with quadriplegia; 3) an assessment 

of the usability and effectiveness of the constrained gestures as 

an alternative for users with quadriplegia.  
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II. PROBLEM DEFINITION 

The problem in the paper can be summarized as determining 

how to project standard gestures from a known manifold to a 

constrained (unknown) manifold that corresponds to the space 

where people with upper extremity motor impairments use. We 

refer to the term “standard gestures” as those gestures produced 

or designed for individuals without disabilities. A set of 

standard gestures used for a specific gesture-based interface is 

defined as “a standard gesture lexicon”. Correspondingly, “a 

constrained gesture lexicon” represents the gesture set in the 

constrained space, which are usable for individuals with 

physical impairments. Let 𝑮 denote a standard lexicon with 𝑁 

gestures. 𝑮̃  represents a constrained gesture lexicon 

corresponding to those gestures in 𝑮 . 𝑔𝑛 and 𝑔̃𝑛 (𝑛 =

1,2, … , 𝑁) denote the 𝑛th gesture in 𝑮 and 𝑮̃, respectively (Eq. 

1 and 2). Let ℒ represents a mapping from a gesture trajectory 

to a feature vector, and 𝑔̌ be an arbitrary gesture. 𝜳 denotes a 

pre-trained transform function set that maps the feature vector 

of a standard gesture to a set of feature vectors corresponding 

to constrained gestures. The problem can be represented as: 

finding a constrained gesture lexicon to satisfy Eq. 3 and 4 (Fig. 

1). 

𝑮 = {𝑔1, 𝑔2, … , 𝑔𝑛 , … , 𝑔𝑁}   (𝑛 = 1,2, … , 𝑁) (1) 

𝑮̃ = {𝑔̃1, 𝑔̃2, … , 𝑔̃𝑛, … , 𝑔̃𝑁}  (𝑛 = 1,2, … , 𝑁) (2) 

𝑔̃𝑛 = arg min
 𝑔̌

‖ℒ(𝑔̌) − 𝜳(ℒ(𝑔𝑛)‖ (3) 

s.t. 𝑛 ≤ 𝑁, 𝑛 ∈ ℤ+, 𝑔𝑛 ∈ 𝑮, and 𝑔̃𝑛 ∈ 𝑮̃ (4) 

 
 

Fig. 1. Problem definition and the gap in knowledge 

III. METHODOLOGY 

A. User-centered Approach (UCA) 

The UCA is a method that is used to tackle the problem using 

a human-centered approach. For a given standard gesture set 𝑮, 

a constrained gesture set 𝑮̃ is obtained through interviews with 

human subjects and user-centered experiments. The 

interviewed subjects are individuals with quadriplegia due to 

SCI. A prototype trajectory of each gesture class 𝑔𝑛 (Eq. 1) in 

the standard gesture set 𝑮 was presented to the subjects using a 

slideshow [18], [19]. These subjects were then asked to provide 

a preferred gesture for the given gesture trajectory. The subjects 

can choose to use the presented gesture 𝑔𝑛  or alternatively 

select a new gesture trajectory. Furthermore, the subjects could 

imitate sections of the given gesture trajectory, and replace the 

stressful segments of the gesture with a new sub-trajectory of 

their choice. 

Each gesture 𝑔𝑛 ∈ 𝑮 was performed 𝑀 times by the subject 

and each instance was recorded as 𝑧𝑛,𝑗(𝑛 = 1,2, … , 𝑁;  𝑗 =

1,2, … ,𝑀), where 𝑀 is the number of instances (𝑀 equals to 5 

in this paper), and 𝑁 the number of gestures in 𝑮 (Eq. 5). The 

function 𝒻  maps the given gesture 𝑔𝑛  to a gesture trajectory 

𝑧𝑛,𝑗  (a realization of a gesture, or instance). The acquired 

gesture trajectories are then preprocessed by two steps to reduce 

noise and the variability exhibited by users. First, outliers are 

removed (outliers are considered as those trajectory points 

further than three times the standard deviation from the mean). 

Then, the trajectories are smoothed using a Kalman filter [20] 

together with a Butterworth filter [21], resulting a gesture 

instance 𝑧̃𝑛,𝑗 (Eq. 6). The function ℱ maps the acquired gesture 

trajectory 𝑧𝑛,𝑗  to a filtered trajectory 𝑧̃𝑛,𝑗 . The instances 

𝑧̃𝑛,1, 𝑧̃𝑛,2, … , 𝑧̃𝑛,𝑗 , … , 𝑧̃𝑛,𝑀  for each gesture in the lexicon are 

then aligned using dynamic time warping [22] and the mean 

gesture is computed. This mean gesture is assigned to the 

constrained gesture set, and referred as gesture 𝑔̃𝑛 (Eq. 7). 

𝑧𝑛,𝑗 = 𝒻(𝑔𝑛) (𝑛 = 1,2, … , 𝑁, 𝑗 = 1,2, … ,𝑀) (5) 

𝑧̃𝑛,𝑗 = ℱ(𝑧𝑛,𝑗) (𝑛 = 1,2, … , 𝑁, 𝑗 = 1,2, … ,𝑀) (6) 

𝑔̃𝑛 =
1

𝑀
∑𝒜(𝑧𝑛,𝑗)

𝑀

𝑗=1

 (7) 

where 𝒜 is the function for gesture alignment. It results in an 

aligned trajectory 𝒈̃𝒏. This process is repeated for all gestures 

in the standard set (Fig. 2). After applying Eq. 7, a new gesture 

set is obtained. This method delivers a gesture set in the 

constrained space through a subjective approach. This approach 

generates one gesture set per user. Users might come up with 

different gesture sets based on their personal preferences and 

based on their functional degrees of mobility available. These 

types of gestures generated are user-centered, since the 

production process is built on the personal considerations. 

 

 

Fig. 2. Flow process for the user-centered approach 

B. Analytic Approach (AA) 

An analytic gesture generation approach [23] is proposed to 

address the problem of projecting standard gestures from a 

known manifold to a constrained manifold that corresponds to 

people with quadriplegia due to SCI. This approach consists of 

four steps: gesture trajectory acquisition and preprocessing, 
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feature extraction, transformation, and constrained gestures 

generation.  

The first step, gesture trajectory acquisition and 

preprocessing, collects two sets of gestures through interviews 

with individuals without disabilities and subjects with 

quadriplegia due to SCI, respectively. The process to obtain the 

two sets consists of requesting each subject (in each user group) 

to perform all the standard gestures. Each gesture instance is 

recorded, preprocessed, and collected leading eventually to a 

union set. Then, the feature extraction step consists of 

constructing feature vector, including the Laban space, 

kinematic, and geometric components, from each gesture 

trajectory. The Laban space features are good representations 

of the physical operational space of an individual. Features 

based on LMA components (Space, Effort, and Shape) are 

adopted to represent this operational space. The features 

representing the Space component are extracted using the 

symbolic representation developed in [24]. The Effort 

component is expressed by directness, inertia, and duration of a 

gesture trajectory [25], [26]. The Shape component is 

quantified by the volume of the gesture trajectory. For each pair 

of feature vectors extracted from gestures of subjects without 

disabilities and with quadriplegia, a transform function is 

obtained using regression trees. During the gesture generation 

step, for any given standard gesture trajectory, the acquired 

transform function is subsequently applied to project it and thus 

generate a candidate gesture set in the constrained manifold. A 

detailed description appears in [23] and is repeated here.  

The gesture instance ( 𝑗 ) obtained from each trial ( 𝑖 ) is 

denoted as 𝑥𝑖,𝑗(𝑖 = 1,2, … ,𝒩𝑡𝑟𝑎𝑖𝑛;  𝑗 = 1,2, … ,𝑀) for subjects 

without disabilities, and 𝑦𝑖,𝑗 for subjects with quadriplegia (Eq. 

8 and 9). 𝒻 represents the mapping from the gesture 𝑔̅𝑖 to the 

gesture trajectories. The corresponding training gesture set for 

each standard gesture is then denoted as 𝑿𝑖  and 𝒀𝑖 (Eq. 10 and 

11). 

𝑥𝑖,𝑗 = 𝒻(𝑔̅𝑖) (8) 

𝑦𝑖,𝑗 = 𝒻(𝑔̅𝑖) (9) 

𝑿𝑖 = {𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝑗 , … , 𝑥𝑖,𝑀} (10) 

𝒀𝑖 = {𝑦𝑖,1, 𝑦𝑖,2, … , 𝑦𝑖,𝑗 , … , 𝑦𝑖,𝑀} (11) 

Let 𝓘 (Eq. 12) denote the set of gesture instances performed 

by individuals without disabilities, and 𝓘̃ (Eq. 13) be the set of 

gesture instances collected from subjects with physical 

impairments. The union is denoted as 𝓢 (Eq. 14).  

𝓘 = {𝑿1, 𝑿2, … , 𝑿𝑖 , … , 𝑿𝒩𝑡𝑟𝑎𝑖𝑛
} (12) 

𝓘̃ = {𝒀1, 𝒀2, … , 𝒀𝑖 , … , 𝒀𝒩𝑡𝑟𝑎𝑖𝑛
} (13) 

𝓢 = {𝓘, 𝓘̃} (14) 

Let the maximum and the minimum values of each feature be 

denoted as {𝑢1, 𝑢2, … , 𝑢𝑗, … , 𝑢𝐾}  and {𝑙1, 𝑙2, … , 𝑙𝑗 , … , 𝑙𝐾} . An 

arbitrary feature (denoted as 𝐹) is then normalized using Eq. 15. 

𝐹′ =
𝐹 − 𝑙𝑗

𝑢𝑗 − 𝑙𝑗
 (𝑗 = 1,2, … , 𝐾) (15) 

Let 𝑃𝑚
𝑖,𝑗

 denote a specific feature extracted from a gesture 

instance (𝑥𝑖,𝑗) collected from a subject without disability, and 

𝑄𝑚
𝑖,𝑗

 be a specific feature extracted from a gesture instance (𝑦𝑖,𝑗) 

obtained from a subject with quadriplegia (𝑖 =

1,2, … ,𝒩𝑡𝑟𝑎𝑖𝑛; 𝑗 = 1,2, … ,𝑀;𝑚 = 1,2, … , 𝐾 ). Let 𝝓𝒊,𝒋 ∈ ℝ𝐾 

denote a vector extracted from a gesture instance 𝑥𝑖,𝑗(𝑖 =

1,2, … ,𝒩𝑡𝑟𝑎𝑖𝑛; 𝑗 = 1,2, … ,𝑀) , which consists of all features 

(𝑃1
𝑖,𝑗

, 𝑃2
𝑖,𝑗

, … , 𝑃𝐾
𝑖,𝑗

) (Eq. 16). Similarly, 𝜙̃𝑖,𝑗 ∈ ℝ𝐾  (Eq. 17) is a 

vector consisting of all the features (𝑄1
𝑖,𝑗

, 𝑄2
𝑖,𝑗

, … , 𝑄𝐾
𝑖,𝑗

) extracted 

from a constrained gesture instance 𝑦𝑖,𝑗. ℒ represents the Laban 

transform. 

𝝓𝑖,𝑗 = ℒ(𝑥𝑖,𝑗) (16) 

𝝓̃𝑖,𝑗 = ℒ(𝑦𝑖,𝑗) (17) 

For each given gesture, 𝚽𝐢and 𝚽̃𝐢 denote the set consisting of 

all feature vectors extracted from gesture instances of subjects 

without disabilities and subjects with quadriplegia, respectively 

(Eq. 18 and 19). The transform function (𝜓𝑖) for 𝑔̅𝑖 is obtained 

using regression trees [43] (Eq. 20). For each transform 

function 𝜓𝑖 , a regression tree is obtained based on the input and 

output variables 𝚽𝐢 and 𝚽̃𝐢. By applying this procedure for all 

the gestures, the set of transform function (𝜳 =

{𝜓1, 𝜓2, … , 𝜓𝑖 , … , 𝜓𝒩𝑡𝑟𝑎𝑖𝑛
}) is obtained.  

𝚽𝑖 = [𝝓𝑖,1, 𝝓𝑖,2, … , 𝝓𝑖,𝑀]

=

[
 
 
 
 𝑃1

𝑖,1, 𝑃1
𝑖,2, … , 𝑃1

𝑖,𝑗
, … , 𝑃1

𝑖,𝑀 

𝑃2
𝑖,1, 𝑃2

𝑖,2, … , 𝑃2
𝑖,𝑗

, … , 𝑃2
𝑖,𝑀

⋮

𝑃𝐾
𝑖,1, 𝑃𝐾

𝑖,2, … , 𝑃𝐾
𝑖,𝑗

, … , 𝑃𝐾
𝑖,𝑀

]
 
 
 
 

 
(18) 

𝚽̃𝑖 = [𝝓̃𝑖,1, 𝝓̃𝑖,2, … , 𝝓̃𝑖,𝑀]

=

[
 
 
 
 𝑄1

𝑖,1, 𝑄1
𝑖,2, … , 𝑄1

𝑖,𝑗
, … , 𝑄1

𝑖,𝑀 

𝑄2
𝑖,1, 𝑄2

𝑖,2, … , 𝑄2
𝑖,𝑗

, … , 𝑄2
𝑖,𝑀

⋮

𝑄𝐾
𝑖,1, 𝑄𝐾

𝑖,2, … , 𝑄𝐾
𝑖,𝑗

, … , 𝑄𝐾
𝑖,𝑀

]
 
 
 
 

 
(19) 

(𝚽̃𝑖)𝐾×𝑀
= (𝜓𝑖)𝐾×𝐾(𝚽𝑖)𝐾×𝑀 (20) 

Let 𝑔̆𝑛 denote a seed gesture collected from subjects without 

disabilities. 𝝓̅𝒏 (𝑛 = 1,2, … , 𝑁) is the feature vector obtained 

for 𝑔̆𝑛 (Eq. 21) . The obtained feature vector 𝝓̅𝒏  is then 

projected to a set of constrained feature vectors 𝝓̂𝒏,𝒊(𝑖 =

1,2, … ,𝒩𝑡𝑟𝑎𝑖𝑛)  using 𝜳 = {𝜓1, 𝜓2, … , 𝜓𝑖 , … , 𝜓𝒩𝑡𝑟𝑎𝑖𝑛
}  (Eq. 

22). For each gesture 𝑔𝑛 , 𝒩train  constrained feature vectors 

( 𝝓̂𝒏,𝟏, 𝝓̂𝒏,𝟐, … , 𝝓̂𝒏,𝒊, … , 𝝓̂𝒏,𝓝𝒕𝒓𝒂𝒊𝒏
) can be obtained using the 

transform function 𝜳 . Since the trajectories possess more 

information than their feature vectors, it is not analytically 

possible to obtain a gesture trajectory from its inverse Laban 

transform ℒ−1(𝝓̅𝑛) = 𝑔𝑛. 

𝝓̅𝑛 = ℒ(𝑔̆𝑛)(𝑛 = 1,2, … , 𝑁) (21) 

𝝓̂𝑛,𝑖 = 𝜓𝑖(𝝓̅𝑛)(𝑖 = 1,2, … ,𝒩𝑡𝑟𝑎𝑖𝑛) (22) 

To tackle this problem, a gesture generator is applied to 

generate a gesture instance 𝑔̌. A feature vector 𝝓̌ (Eq. 23) is 

computed from the generated gesture and compared with the 

constrained feature vector 𝝓̂𝒏,𝒊. The mean trajectory that can 

minimize the distance metric (e.g. Euclidian) between 𝝓̌ and 
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𝝓̂𝒏,𝒊  is kept as a candidate gesture 𝑔̂𝑛,𝑖  (Eq. 24). For each 

gesture 𝑔𝑛 , a candidate set including (denoted as 𝑮̂𝑛) 𝒩𝑡𝑟𝑎𝑖𝑛 

constrained gestures are obtained (Eq. 25). The union of all the 

candidate set 𝑮̂𝒏 is denoted as 𝛀 (Eq. 26).  

𝝓̌ = ℒ(𝑔̌) (23) 

𝑔̂𝑛,𝑖 = arg min
𝑔̌

‖𝝓̌  −  𝝓̂𝑛,𝑖‖  (24) 

𝑮̂𝑛 = {𝑔̂𝑛,1, 𝑔̂𝑛,2, … , 𝑔̂𝑛,𝑖 , … , 𝑔̂𝑛,𝒩𝑡𝑟𝑎𝑖𝑛
} (25) 

𝛀 = {𝑮̂1, 𝑮̂2, … , 𝑮̂𝑛 , … , 𝑮̂𝑁} (26) 

IV. EXPERIMENTS AND RESULTS 

This research was approved by Purdue Institutional Review 

Board (IRB) and Rehabilitation Hospital of Indianapolis (RHI). 

The participants were recruited to this study using a flyer sent 

to the students e-mail list and distributed to the patients. The 

recruited subjects met one of the two criteria: 1) the subjects did 

not have any motor disabilities; and 2) subjects had 

quadriplegia due to C-1 to C-8 SCIs. 

Gesture sets presented in Fig. 3 were used as the standard 

gesture sets (gestures in Fig. 3 (a)-(c) were used in [23], while 

Fig. 3 (d) were used in this paper). These selected gestures were 

developed for users without disabilities for different 

applications ranging from entertainment to education and were 

found in gaming console guides and products’ manuals. The 

gesture lexicon shown in (a) have been used in [28] to help users 

with upper motor impairments with their rehabilitation. 

 

      
                           (a)                                                               (b) 

      
                           (c)                                                               (d) 

Fig. 3 Standard gesture lexicons (a) “Xbox” lexicon; (b) “PointGrab” lexicon; 

(c) “Win8” lexicon; (d) “Wisee” lexicon 

A. Experimental Results for the User-Centered Approach 

(UCA) 

Three male subjects (aged 29, 42, and 60) with quadriplegia 

(due to C-4/5, C-4/5, and C-5/6 SCI) were recruited to test UCA. 

The recruited subjects were able to perform coarse arm 

functions, but had limited fine motor function in the hands. The 

trajectories of the right arm were used for the testing procedure. 

For each of these lexicons, a constrained gesture set was 

created including the mean trajectory of the corresponding 

constrained gestures (Fig. 4). The subjects were asked to 

perform each gesture for five trials. Each set of gestures in Fig. 

4 represents the constrained gestures (with Fig. 4 (a)-(g) each 

corresponds to a standard gesture in Fig. 3 d) obtained from 

three subjects with motor impairments. The average variance 

between each execution for each subject is 52.3, 40.9, and 50.2, 

respectively (as large as 75.4, 44.7, 94.5, and as small as 27.9, 

29.1, 29.2). 

 Using 𝑈𝐶𝐴 , a constrained gesture lexicon 𝑮̃  is obtained 

based on the user’s preference and performance. Thus, 𝑮̃  is 

useful for this user. However, the acquired gesture lexicon may 

not be applicable for users with different types of disabilities. 

 
                      (a)                         (b)                   (c)                   (d)                    

 
                                    (e)                     (f)                  (g) 
Fig. 4 The constrained gestures obtained by the user-centered approach for the 

“Wisee” lexicon through interviews with three quadriplegic subjects. 

 

To understand how different the gestures performed by 

subjects with quadriplegia are from the standard ones, 

Mahalanobis distance [29] measurement between the gestures 

was adopted.  The Mahalanobis metric addresses the limitation 

of Euclidean metric by accounting for the scaling of the 

coordinate axes. This distance metric assesses the separation 

(dissimilarity) of two groups of data, normalized so they are 

projected into the main distribution axis. We refer to this metric 

(the Mahalanobis distance) as a “Score” (Eq. 27). 𝑋 and 𝑌 are 

the sets of points (from the trajectories) corresponding to 

gestures performed by subjects without disabilities and subjects 

with disabilities, and 𝑆 is the covariance matrix. 

𝑆𝑐𝑜𝑟𝑒 = √(𝑋 − 𝑌)𝑆−1(𝑋 − 𝑌) (27) 

 TABLE I illustrates the Mahalanobis distances between 

subjects with and without disabilities (or among subjects without 

disabilities). The level of the score measured the dissimilarity of 

gestures performed by subjects without disabilities and subjects 

with quadriplegia. A higher score indicated a larger dissimilarity 

between the two gesture groups, while a lower score indicated a 

smaller dissimilarity. The numbers in bold indicate the smallest 

Mahalanobis distance among a column (gesture). From the 

results, two (Subject 2 gesture d and Subject 3 gesture e, which 

are marked in bold) out of twenty-one constrained gestures 

obtained from subjects with upper extremity motor impairments 

were similar (has smallest Mahalanobis distance compared to 

the subjects without disabilities and other subjects with 

quadriplegia listed in the same column) to those gestures 

performed by subjects without disabilities. This indicates that 

the gestures selected by subjects with motor impairments were 

different from those gestures performed by subjects without 

disabilities. However, the score only measures the separation 

between the two gesture groups in a linear space. This means 

that this score does not necessarily indicate that the gestures are 

different in a non-linear space (e.g. such as the Laban space, 

which reflects better the user action space). To represent the 

gestures in a non-linear space, results using Laban 

transformation are provided in the following section. 

TABLE I  

MAHALANOBIS DISTANCE FOR THE “WISEE” LEXICON (MM) 

Mahalanobis 

Score 
(a) (b) (c) (d) (e) (f) (g) 

Subject 1 12.87 15.13 9.88 9.10 12.04 4.32 5.78 

Subject 2 16.38 8.68 5.01 7.07 8.29 7.46 5.12 

Subject 3 9.71 6.20 6.73 8.27 7.64 5.19 4.31 

Able-bodied 8.95 6.02 4.88 8.45 11.35 3.71 2.55 
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B. Experimental and Gesture Generation for AA 

Four (two male and two female) subjects without disabilities 

(aged 29, 31, 26, and 30) and four male subjects (aged 29, 42, 

43, and 60) with quadriplegia (due to C-4/5, C-4/5, C-5, and C-

5/6 SCI) were recruited to acquire a union of the gesture 

instances and train the transform function. The subjects with 

quadriplegia were able to perform arm functions within a 

limited space. 

The constrained gestures obtained from the proposed 

approach are illustrated in Fig. 5. From these displaying figures, 

the present gestures demonstrate varied forms of the original 

gestures. In addition, most of the gestures exhibit more 

curvature than the ones in the standard lexicons (𝑔𝑖  ∈  𝑮 ). 

However, it is not possible to evaluate the effectiveness and 

usability of these gestures based purely on the appearance. To 

further assess these candidate constrained gesture sets, a 

subjective validation was conducted with subjects with 

quadriplegia in the next section. 

  
                           (a)                                                          (b)  

   
                      (c)                                                         (d)   

 
                                                           (e)   

   
                              (f)                                                    (g)   

Fig. 5 Constrained candidate gestures for the “Wisee” lexicon. 

C. Subjective Validation for AA 

Six male subjects (aged 29, 30, 33, 42, 45, and 56) with upper 

extremity motor impairments (different from the subjects 

recruited for UCA) were recruited in a subjective validation 

experiment to evaluate the constrained gestures: five subjects 

with quadriplegia (due to C-4, C-4/5, C-7, C-6/7, and C-5/6 

level of SCI) and one subject with Neurofibroma. The subjects 

were required to answer two questions: Q1) how confident you 

feel you can perform the given gesture? (Fig. 3(d)); Q2) choose 

one gesture from the candidate set that is better than the gesture 

given in Q1 (only if there is such) (Fig. 6).  

 
 (a)            

 
(b) 

Fig. 6 Slides for the user-based validation 

For Q1, the subjects were asked to see a standard gesture in 

the “Wisee” lexicon (demonstrate via a slideshow) and rank the 

difficulty of the given gesture using the Borg scale (used to 

evaluate the effort the subjects experienced for a given gesture) 

[30] (0-10). A higher score indicates that the given gesture is 

more difficult to perform. For Q2, both the standard gesture 

(illustrated in Q1) and the corresponding constrained candidate 

gestures (all the gestures in Fig. 5) were shown to the subjects. 

The subjects can either select the standard gesture or an 

alternative gesture in the candidate set. The subjects were not 

aware whether the gestures were designed for healthy 

participants or the one generated for subjects with quadriplegia. 

From the response of Q2, thirty six out of forty two preferred 

gestures selected by subjects with upper extremity motor 

impairments came from the constrained gesture sets generated 

by the AA (Fig. 7). The bar graph (upper part) illustrated the 

effort reported by each subject for each gesture in the “Wisee” 

lexicon (Fig. 3 d). The stem graph (lower part) indicated the 

index of the constrained gestures (Fig. 5) selected by the 

subjects. If there is no stem under the bar graph, it indicates that 

the gestures tend to keep the given gesture instead of selecting 

a gesture from the candidate set. From the results, even for the 

subject with C-7 quadriplegia, who has more residual hand/arm 

functions than the other subjects, three out of seven gestures 

were selected from the candidate constrained gesture set.  

  
Fig. 7 Borg Scale and gesture selection results corresponding to the testing 

gestures. 

D. Stability Validation for AA 

For subjects with mobility impairments, a failure of one joint 

can be compensated by the remaining joints in their redundant 

motor system. Since different gestures allow for different level 

Question 1

• Please tell us how confident you feel you can 
perform the following gesture.

– Using scale 0-10

Nothing 
at all
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0 10
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Question 2
• Pick one alternative gesture that you think is better 

than the previous gesture (only if there is such)
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of redundancy, the goal is to pick those gestures that allow for 

the largest redundancy of the motor system to construct the final 

gesture set. A stability index (denoted as 𝑅𝑉) was computed for 

each standard and candidate gesture based on the Uncontrolled 

Manifold framework [21], [31]. This stability index is applied 

to identify differences in stability in joint configuration space 

for different gestures.  

Four male subjects (aged 29, 33, 45, and 56) with 

quadriplegia (due to C-4/5, C-6/7, C-5, and C-5/6 SCI) were 

recruited to perform the standard (Fig. 3 d) and constrained 

gestures (generated by AA, see Fig. 5). The stability index 𝑅𝑉 

for the standard gesture (with gesture index “0”) and 

constrained candidate gestures (with gesture index “1” to “17”) 

are illustrated as in TABLE II. The goal was to select the 

gestures with the highest stability (largest stability index). From 

Table II, the gestures with the largest stability index were “9”, 

“9”, “11”, “0”, “11”, “3”, and “12”, respectively. The 

corresponding average stability indices were 1.200, 1.132, 

1.105, 1.482, 1.214, 1.035, and 1.006.  The results revealed that 

six out of seven selected gestures (with the highest stability) 

were from constrained candidate gesture set (gestures with 

index “9”, “9”, “11”, “11”, “3”, and “12”). This result was 

consistent with the subjective validation results. 

TABLE II 
STABILITY INDICES FOR STANDARD AND CONSTRAINED GESTURES 

Index (a) (b) (c) (d) (e) (f) (g) 

0 0.943 0.929 0.846 1.482 0.977 0.665 0.774 

1 0.659 0.829 0.701 0.995 0.886 0.677 0.670 

2 0.860 0.870 1.042 1.126 0.989 0.865 0.607 
3 0.709 0.973 0.651 0.863 0.976 1.035 0.692 

4 0.803 1.095 0.745 0.886 0.898 0.667 0.680 

5 1.096 1.113 0.739 0.836 0.782 0.942 0.648 
6 0.899 0.849 0.731 0.789 0.848 1.002 0.843 

7 0.802 0.887 0.660 0.756 1.015 0.946 0.770 

8 0.721 0.964 0.701 0.834 0.720 0.532 0.579 
9 1.200 1.132 0.834 0.569 1.007 0.708 0.556 

10 0.925 0.918 1.100 1.051 0.785 0.710 0.790 

11 0.538 0.674 1.105 0.786 1.214 0.682 0.827 
12 0.601 0.884 0.973 0.813 0.795 0.861 1.006 

13 0.703 0.940 0.887 0.888 0.874 0.661 0.706 

14 0.601 0.818 0.879 0.771 1.073 0.610 0.789 
15 0.799 0.901 0.872 0.921 0.750 0.962 0.735 

16 0.733 0.886 1.096 0.841 1.081 0.903 0.782 

17 0.673 0.792 0.984 0.725 1.043 0.961 0.676 

V. DISCUSSION 

The UCA and AA are two solutions for the same problem 

presented in Section II, and they are equally important, but 

different in nature. One is fundamentally based on subjective 

opinions, while the other is mathematically inspired. To further 

validate the usability of the proposed analytic method, a user-

based and a stability-based validation were conducted with six 

and four subjects with quadriplegia, respectively. In the user-

based validation, the standard gesture (Fig. 3 a) and all 

constrained gestures corresponds to each standard gesture were 

demonstrated to the subjects via slideshows (Fig. 7). Based on 

the informal feedback, this demonstration was effective to 

convey the gestures to the subjects. This may lead us to think 

that there are more chances to select a preferred gesture from 

the constrained set. Nevertheless, if the standard gesture is 

easier for users with mobility impairments to perform, they will 

still select it. The results (Fig. 6) revealed that subjects with 

upper extremity mobility impairments preferred to use the 

gestures generated by the analytic approach. Even for the 

subject with C7 quadriplegia, who has more residual hand/arm 

functions than the other subjects, three out of seven gestures 

were selected from the candidate constrained gesture set.  

This study has a number of limitations: 1) Due to the 

difficulty of recruiting subjects with quadriplegia, this work 

includes a limited number of subjects in each experiment. Thus, 

further experiments are required in the future to provide more 

generable results. 2) It was assumed that users with the same 

type of disability will have a similar limitation when they 

perform a given gesture. This is true for most of the cases. 

However, for users with a variety of disabilities, the clinical 

conditions may be more complicated; thus, the pre-trained 

transform function may not be applicable and new data 

regarding to this user should be added for training. 3) The 

procedure described for the AA and UCA methods is the same 

for every user with C4-C5 mobility impairments. The only 

difference is the resulting gestures after applying this method; 

which represent the fact that different users will select different 

gestures that are more suitable. That is, the gestures obtained 

from the procedure described are generable for users with the 

same type of disability, however, they may not be adaptable for 

users with other types of disabilities.  4) Since there is no direct 

ways to measure the effectiveness of a gesture, a gesture is 

evaluated by the qualities such as desirability, total effort, and 

redundancy. We don’t know whether these gestures are 

optimal, but they are better than the existing standard gestures. 

This work could inspire and lead to clinical applications in 

the area of rehabilitation and cognitive and physical therapies. 

Video games are beneficial for cognitive and motor skill 

learning in rehabilitation science. Through our approach, 

existing gesture-based consoles can be adapted for people with 

motor impairments, and thus allowing this underserved 

population access to gaming based rehabilitation. 

VI. CONCLUSIONS 

In this paper, we studied the possibility of transforming 

gestures from standard lexicons to those that can be performed 

by users with motor impairments. Two new methods (𝑈𝐶𝐴 and 

𝐴𝐴 ) were proposed to address the problem of projecting 

standard gestures from a known manifold to an unknown 

constrained manifold that are usable for users with 

quadriplegia. The 𝑈𝐶𝐴 provides a subjective solution through 

interviews with subjects with quadriplegia due to middle level 

(C4-C5) SCIs. For each standard gesture, one constrained 

gesture is acquired for each individual subject. This method is 

used to customize gesture-based interface for persons with 

motor impairments. However, it can only provide 

individualized solutions for a specific user rather than 

generalizable solutions. The 𝐴𝐴 is an analytic-based approach 

that builds the solutions based on a pre-trained transform 

function (coined the Laban Transform) and a gesture generator. 

The transform function is trained using the gesture instances 
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collected from subjects without disabilities and subjects with 

quadriplegia due to mid-level (C4-C5) SCIs. For each gesture 

in the standard lexicon, seventeen constrained gestures are 

obtained with varied shape and curvature to constitute a 

candidate set. The generated constrained gestures were 

validated through a set of subjective experiments. Subjects with 

quadriplegia preferred to select the constrained gestures rather 

than the standard gestures (thirty-six out of forty-two 

constrained gestures were selected). This result is consistent 

with the stability-based validation (six out of seven gestures in 

the candidate were with higher stability index than the standard 

gesture). 
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